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A solution has been obtained for steady propagation of a two-dimensional fluid 
fracture driven by buoyancy in an elastic medium. The problem is formulated in 
terms of an integro-differential equation governing the elastic deformation, coupled 
with the differential equation of lubrication theory for viscous flow in the crack. The 
numerical treatment of this system is carried out in terms of an eigenfunction 
expansion of the cavity shape, in which the coefficients are found by use of a 
nonlinear constrained optimization technique. When suitably non-dimensionalized, 
the solution appears to  be unique. It exhibits a semi-infinite crack of constant width 
following the propagating fracture. For each value of the stress intensity factor of 
the medium, the width and propagation speed are determined. The results are 
applied to  the problem of the vertical ascent of magma through the earth's mantle 
and crust. Values obtained for the crack width and ascent velocity are in accord with 
observations. This mechanism can explain t'he high ascent velocities required to 
quench diamonds during a Kimberlite eruption. The mechanism can also explain how 
basaltic eruptions can carry large mantle rocks (xenoliths) to the surface. 

1. Introduction 
Fluid fracture is accepted as an important mechanism for the transport of magmas 

in the Earth's crust and mantle. Evidence for fluid fracture comes from studies of the 
structure and emplacement of dykes and sills (Pollard 1973, 1976; Pollard & Muller 
1976; Delaney & Pollard 1981, 1982; Shaw 1980; Muller & Muller 1980). The vertical 
transport of magmas is driven by the differential buoyancy of the magma relative 
to the country rock. Buoyancy-driven fluid fractures as a mechanism for magma 
migration have been studied by Weertman (1971), Anderson & Grew (1977), Secor 
& Pollard (1975), and Stevenson (1982). One of the most spectacular examples of 
buoyancy-driven magma fracture is the Kimberlite eruption responsible for the 
emplacement of diamonds a t  the earth's surface (Anderson 1979). These eruptions 
require high velocities in order to quench diamonds ; the required velocities are 
estimated to be in the range 0.5-5 m/s (Pasteris 1984). 

Spence & Sharp (1985) obtained a series of similarity solutions for pressure-driven 
fluid fracture. These results were applied to the emplacement of dykes and sills by 
Spence & Turcotte (1985) and Emerman, Turcotte & Spence (1986). These solutions 
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treat the elastic deformation of the host medium together with the fluid-transport 
problem, and take account of the fracture resistance of the medium through a 
stress-intensity factor. Both two-dimensional and axisymmetric flows were con- 
sidered. The lubrication approximation was used and both laminar and turbulent 
flows were considered. In  this paper the approach is extended to buoyancy-driven 
fluid fracture. 

The problem is formulated in $ 2 .  The governing elastic and lubrication equations 
for a steadily advancing crack are then combined into a single nonlinear integral 
equation in $ 3 ,  and some of the properties of its solution are investigated analytically. 
The numerical method of solution chosen is presented in $4. It involves expansion 
of the shape function h in terms of Chebychev polynomials with unknown coefficients. 
These coefficients were determined by a constrained optimization technique described 
in $ 5 ,  leading to a solution which appears to be unique. Parameters obtained from 
this solution are used in $ 6  to discuss magma transport in the crust. 

2. Formulation of the problem 
A vertically-propagating two-dimensional crack is considered. The crack is em- 

bedded in a uniform impermeable elastic medium with shear modulus p, Poisson's 
ratio u, and density ps representing the surrounding rock. The crack width is 2h(y,  t )  
(y measured vertically upwards) and we assume that the walls are almost parallel 
in the sense that the lengthscale over which h changes significantly is large in 
comparison with pip, g.  Then if Q is the upward flux of fluid in the crack, continuity 
requires a aQ 

at aY 
- (2h) +- = 0. 

Provided the crack is sufficiently thin and the fluid viscosity qm sufficiently large, 
the flow will be laminar and may be treated by lubrication theory. Q is the flux 
induced by the external pressure gradient together with the hydrostatic pressure 
-pmgy, pm being the density of the fluid magma contained within the crack: 

The pressure acting on the walls of the crack is 

where p , ( y , t )  is the non-hydrostatic part of the stress tensor, i.e. gl1 if suffix 1 
indicates the horizontal direction, and represents the elastic contribution to the 
pressure, which is given in terms of the distribution of h by 

(the integral in (2 .4)  is a Cauchy principal value). 
Equations (2.1)-(2.3) combine to give the Reynolds equation 

ah 1 a - = - - [ h3 - g A p ) ]  , 
at 37, aY 
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is the density difference driving the buoyancy force. We seek solutions of (2.4) and 
(2.5) for cracks that propagate at  a constant speed c .  Thus we require 

h = h(z ) ,  p, = po(z)  where z = ct-y. (2.7) 

Then (2.5) becomes 

and integration gives 

3ymch-h3(%+gAp) = 0,  

(2.8) 

(2.9) 

where the condition h( - 00) = 0 has been used to set the constant of integration to 
zero. Since the elastic pressure gradient dpo/dz must vanish far from the crack tip, 
i.e. as z+ 00, the speed of propagation is related to the limiting crack width by 

c = (-)h"0O). 9 AP 
37, 

Also 12.4) becomes 

(2.10) 

(2.11) 

the lower limit of integration now being the crack tip z = 0. It is convenient to  
introduce the length- and time-scales 

(2.12) 

Then if we replace z ,  h and p, by dimensionless quantities x ,  h, j3 defined in terms 
of L and the crack width h( 00) = h,, by writing 

x = (Lh,):x, h ( z )  = h ,  h ( x ) ,  

the speed of propagation is 
c = -  h2, 

LT' 
while (2.9) and (2.11) become 

h2 -+1  = 1 ,  -(E 
dh(s) ds 

ds S - X -  

(2.13) 

(2.14) 

(2.15) 

(2.16) 

These are the equations treated analytically in $ 3  and numerically in $54 and 5. 

2.1. Stress singularity at crack tip 

We next relate the stress singularity at  the crack tip to the stress-intensity factor 
K through 

(2.17) 
K 

- p ( g , t )  - 
P ( Y  -yo)lt' 
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as y approaches the crack tip yo( t )  from outside. I n  terms of a non-dimensional 
stress-intensity factor y = (1  - 1 ) )  K/L:,u, (2.17) becomes 

where 

(2.18) 

(2.19) 

This limiting behaviour requires that, the crack shape near the tip should be 

given by - 
h = 2hx: near x = 0. (2.20) 

For a specified value of y the width h, is related to h by (2.19), and since the speed 
of propagation c is given in terms of h, by (2.14), i t  is also related to  A. One of the 
questions we must address ourselves to is whether the set of equations (2.15), (2.16) 
has a solution exhibiting the limiting behaviour given by (2.20) for all values of A, 
for a discrete set of values, or for a single value. 

3. The integral equation for cavity shape 
I n  this section the elasticity equation (2.16) will be combined with the lubrication 

equation (2.15) to yield a single integral equation for h ( x ) ,  and the limiting behaviour 
of the solution for small and for large values of x derived. From now on we will omit 
the bars over h and p ,  so write the equations as 

p’(x) = 2- 1 ,  h2(x) 

and the solution is to be constrained so that 

h > 0 for all x > 0, h(0) = 0 ,  h ( a )  = 1 .  (3.3) 

Inversion of (3.1) on the interval (0 ,  CO) gives 

where C is an arbitrary constant. For solutions in which h is bounded as x+ 00 we 
must exclude the possibility that  h‘ = x-i, and therefore take C = 0. The equation 
can then be integrated with respect to x to give 

and integration by parts on the right-hand side converts this to  

with 

(3.4) 
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Thus h satisfies the nonlinear integral equation 

on the interval (0, 00). Before the expansion procedure for numerical solution is 
developed, some properties of the solution (if any) may be noted. 

Firstly, the limiting behaviour for small x is given by that of the kernel, which is 

k(x,s) = - -4(xs)i (y  4 1) 

From this it follows that for small values of x 
9 

7c 
h(x)  = 2h&, where h = -7 jOm sip’(s) ds, 

and therefore, by (3.2), p ’ ( x )  - 1/4h2x as s ~ 0 .  This leads via (3.1) to a furt,her term 
for small r 

h(r )  = 2h&+(&)r+ .... 

A is related to the stress-intensity factor at the crack tip x = 0, since if h’(s) z As-: 
nears = 0, then i t  follows from (3 .1 )  that  

(3.7) 

as x+O from the left. A quadratic relationship between h and h can be obtained by 
multiplying (3.4) on both sides by p’(x) and integrating for 0 to 00. This gives 

p ’ (x )h ( r )d r  = ~ ~ o “ o p ’ ( x ) d s ~ o “ o  ( T - s )  In1 Ip’(s)ds I: 
The first integral on the right is identically zero, since its kernel is an actisymmetric 
bounded function of x and s. Therefore 

2 “ o  2 

jomp’(x) h(x) dr = -; (jo zip/(z)  dz) = -$7ch2. 

(This result can also be derived directly from (3 .1 )  using properties of singular 
integrals.) The relationship 

( 3 . 9 ~ ~ )  

which holds when p’ is given by ( 3 . 2 ) ,  provides a numerical check on the accuracy 
of the solution of the combined system. Another check is provided by the inequality 

which follows by adding the positive quantity 

(3 .96 )  

soom (hi- l/hi)2ds 

to both sides of ( 3 . 9 ~ ~ ) .  
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Secondly, the asymptotic behaviour of h for large x can be inferred by writing (3.1) 

say, where A = -Jo" sh'(s) ds = 

Therefore as x + m ,  p ' (x )  - ( l / x x 2 ) ,  so that  by (3.2) 

1 
h(x )  Fz 1+- 

27cx2. 
(3.11) 

This behaviour makes it possible to evaluate further terms: in Appendix A we find 

where 

In x + 2nB-+ 
n2x3 

R(x) = 

1 
27c(s2+ 1) 

and the series for h can be extended to terms of order x - ~  : 

1 A 3 ( 1 n x + 2 ~ B ) - ~  
h(x) - l+------ +.... 

271x2 EX3 2 ~ 2 ~ 4  
(3.12) 

4. Scheme for numerical solution 
To solve the integral equation numerically, we have interpolated p ' ( ~ )  in the form 

of a Chebychev series : N 

p'"'(z) = [x(x+ 1)l-I (4.1) 
n=o 

This form was chosen ( a )  because it possesses the required limiting behaviour, with 
p' x x-l near x = 0, and p' x x - ~  as x+ m, and ( b )  because when it is substituted 
into (3.4), the resulting integrals 

can be evaluated in closed form, so that the left-hand side is approximated by 
N 

h ( N ) ( ~ )  = C A ,  H,(x). 
n-0 

(4.2) 

(4.3) 

We then chose the coefficients A, in this expansion to ensure that p'") was related 
to h(N)  in accordance with (3.2), by minimizing the sum 

M 

i-1 
P ( M ,  N )  = z b ' ( x t ) (N) -  ( h ( X p y +  112, (4.4) 

over a chosen set of M points x1 ... x M .  The details are presented in $ 5 .  With M ,  N 
of order 100 it  is possible to reduce F to the order of 

4.1. Expressions for H ,  

It is convenient to introduce a trigonometrical variable by means of 

x = tan2(++), (4.5) 
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so mapping the flow region ( 0 , ~ )  onto (0, K ) .  Then H,(x) becomes 

- 2( tan f@) 6(n ,  0). (4.6) 

These integrals are evaluated in Appendix B. The first three are 

H, = (n-@) tan2@-@-2 tan$@, 

Hl = H,  + 2@, 

H ,  = H,  + sin @, 

(4.7) 

and the remainder are given by the recurrence relations 

sin (n+ 1) @ sin (n- 1) @] - (n=  2 , 3  ,... ). (4.8) 
n-1 

H,,, - H,-l = (n cos2 $@)-l 

In terms o f  x, the leading terms are 

I H, = -2(x4+(1+x) tan-lxi)+Kx, 

= -4x4+nx+O(x8) near x = 0, 

Hl = H0+4 tan-lxt = nx+O(xs) near x = 0, (4.9) 

4x: 

(1+x) 
H ,  = Ho+- = xx+O(x%) near x = 0. 

The recurrence relation shows that H,+,- Hn-l = O(xg) near x = 0 so that 
H, = nx + O(xs) near x = 0 for n = 1 , 2 , 3  . . . . Hence the limiting behaviour of H as 
calculated from (4.31 is 

H(x) = -4A,x~+nx  

showing that the coefficient of the singularity at x = 0 is given by 

h = --A,, (4.10) 

and that to comply with (3.6) we must have 
N 1 

An=: 
n-0 16A:' 

(4.11) 

This provides a check on the numerical results. Further checks are provided by 
consideration of the asymptotic form of h(x) as given by (3.12). For x $- 1 the 
expressions (4.9) show that 

and more generally, the recurrence relation gives 

whence H ,  z (--1)n-1(x-E) f o r n  = 1,2 ,3  ... 
3x4 

(4.12) 
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8 
324 

N 

n=o 
- Z ( -  l)nAn +- ( ~ A , - A ,  + 2 A , - .  . .) + O(&) .  

Comparison with (3.13) shows that we must have 

x ( -  l )nAn = --, 1 
n (4.13) 

' A  2 0  +Z ( -  l)nnAn = 0. (4.14) 
A further identity comes from the asymptotic form of p'.  For large x, 

Identifying this with the first two terms of the expansion (3.10), which on differen- 

tiation yields 1 2A 
p'(2) z --+-, 

n.2 n23 
we see that the leading terms are the same when (4.13) holds, while the l/x3 terms 
give 

A = JOm ( h -  1) dx = i -n  Z ( -  l)%2An. (4.15) 

This provides a check on the solution since the constant A can be evaluated directly 
by quadrature. 

5. Numerical procedure and results 
As outlined in the last section, the approach adopted to the solution of the integral 

equation (4.4) was to seek a vector of coefficients A") characterizing the interpolations 
h"), P ' ( ~ )  by minimizing the objective function F ( M ,  N )  (equation (4.4)) subject to 
the constraints (3.3) applied to hcN), i.e. for suitably chosen M ,  N 

find min FLM, N ) ,  subject to  h(N) > 0. (5.1 a,  b )  

The solution would be acceptable if the minimum of F was sufficiently small, and 

A (  ' 
if the identities and limiting properties derived in 333, and 4, namely 

h = - 4 A o B  (x+ l ) ,  h x  

1 
Z A i = -  

Z ( - - l ) i A . = - -  1 
a n' 16Ai' 

jom (h-k)dx = -2nAi, 

(5 . lc ,  d )  

i A o + x  ( -  l)iiAi = 0, (5 . l i )  

were satisfied to a prescribed accuracy 
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Clearly F ( M ,  N) possesses a minimum for each M and N. The question is whether 
values of M and N can be found such that the minimum is sufficiently small to ensure 
the identities ( 5 . 1 ~ - i )  are satisfied to  the prescribed accuracy. For this to occur it 
is necessary for errors resulting from truncation of (4.3) to be small. Before using 
these identities to check a solution to (5.1a, b)  we required F to be small (less than 
lop6), A ,  to be small and the A$ to change little when (5.1 a ,  b )  is resolved with larger 
N .  

Problem (5.1) was solved using a scheme based on the continuation method 
given in Spence & Sharp (1985) which involved using M ,  N and the mesh as the 
continuation parameters. To apply this approach to  the current problem it was 
necessary to replace the interval of integration [0,00] by a finite interval [0, xm] and 
to choose the mesh so that the height was resolved sufficiently for both small and 
large values of x and in the neighbourhood of the expected maximum near x = 1. 

For given values of M, N a n d  a given mesh the constrained nonlinear least-squares 
problem (5.1 a ,  b )  was solved using the Harwell routine VEOIAD. Two tests for 
convergence are used. One is 

and the other is 
IA:"-A:l < e (j = 0, ..., N), 

F(Ai+l, 0 AF1,  ..., A$') = F(Ai ,  A:, ..., A h ) ,  

where A: is the value of A, at the ith iteration and ej is the error tolerance. For the 
solutions presented here cj was generally set to lop9 except for checks of the solution 
when ej = 10-lo, 

Initial calculations were performed with xM = 100 and a uniform mesh in x. 

5.  = ~ 'xM (i = 1, ..., M). 
' M  

The intention was to increase M, N a n d  xM until the solution to problem (5.1) was 
known to the prescribed accuracy. However, the results for small M (<30) showed 
that this would require a prohibitively large M. After some experimentation a 
uniform mesh in 6 was adopted : 

in 6 .  = - 
a M + l  

(i = 1, ..., M ) ,  

satisfying qualitatively the mesh requirements. 
M and N were increased in small increments until M = 100 and N = 49 for which 

F was 1.2 x We then attempted to reduce F below lop6 by increasing M to 110 
and N to 54. But F decreased only to  1.1 x lop4. 

Instead of increasing M further with N < i M  we set N = M- 1 making problem 
( 5 . l a , b )  a system of M equations in M unknowns with M constraints. One dis- 
advantage of this approach is that  standard results in approximation theory show 
that increasing the ratio N I M  will in general lead to high frequency oscillations in 
h(N)  and p'"). However, as seen below these had little effect on the solution. 

To solve problem (5.1) with N = M- 1 we had to repeat the continuation on M 
and N because the solutions already obtained with the extra Ai suitably extrapolated 
were not sufficiently accurate initial estimates. We started with M = 5 ,  N = 4 for 
which the minimization was easily achieved. Next M and N were increased in unit 
steps to 20 and then m larger steps until M = 110, N = 109 for which F was 
1.1 x A ,  = -0.65391654andA,,, = 1.5 x 10-'.Althoughthiswasanacceptable 
solution of problem (5.1) we sought greater accuracy by increasing M up to 200. It 
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i 

1 
5 
9 

13 
17 
21 
25 
29 

Xl 

0.00001 
0.002 38 
0.007 75 
0.01626 
0.02802 
0.043 18 
0.061 94 
0.08453 

h"), 
(equation (4.3)) -4A0&+(x/16A~)x 

0.0256 0.0256 
0.1286 0.1288 
0.2329 0.2338 
0.3382 0.341 0 
0.4443 0.4507 
0.551 2 0.5634 
0.658 7 0.6794 
0.7665 0.7993 

TABLE 1. Computed values of h for small x compared with limiting expression (3.6) 
(M = 160, N = 159, e, = lo-', A, = -0.653916) 

i 

118 
124 
130 
136 
142 
148 
154 
160 

h-1 h-1 
(computed (asymptotic, 
using A(N), four-term, 

xt equation (4.3)) equation (3.12)) 
5.03 -0.3821, -1 - 
7.02 -0.2633, -4 

10.27 0.7338, -3 
16.15 0.4397, -3 
28.44 0.1687, -3 
61.50 0.3950, -4 

213.7 0.34255, -5 
10505 0.14410, -8 

.0.2480, -2 
0.4397, -3 
0.7315, -3 
0.4338, -3 
0.1678, -3 
0.3946, -4 
0.34252, -5 
0.14418, -8 

TABLE 2. Comparison of computed values of h with asymptotic expansion (M = 160, N = 159, 

ej = The constants in the expansion are A = 1.7578, B = 2.84) 

was found for M greater than 160 that the gain in accuracy did not justify the extra 
computational cost. 

A,was -0.65391576andthecoefficients 
decreased uniformly so that A,,, A,,, and A,,, were respectively 0.145 x 
0.166 x lop5 and 0.130 x lo-'. A,,, was 2.4 x 10-lo. Values of h for small x and for 
large x are listed and compared with the appropriate limiting formulae in tables 
1 and 2. We have also included a summary of the agreement with the identities 
(5e-i)  in table 3. In all tables the results are displayed in exponent form, i.e. 
a ,  - b s a x 

Tables 1 and 2 illustrate striking agreement with the theoretical estimates of 
(5.1 c, d ) .  From table 3, identity (5.1 e )  which ensures hN(Co) = 1 is seen to be satisfied 
with very high accuracy. This is consistent with the accuracy of the asymptotic 
solution shown in table 2. The remaining identities contain relative discrepancies of 
order lop3 or less. The integrals involved in this table, namely 

A=Jom(h-l)dx,  (in5.19) 

WithM = 160, N = 159, Fwas4.2 x 

and JOm (h-k)dr (in 5 . lh . ) ,  

were calculated by Romberg integration from 0 to x, and analytic integration using 
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Relation Left-hand side Right-hand side Ratio (Z/r) 

(5.l.f) 0.1459 0.146 1 0.9983 
(5.1 9)  1.758 1.748 1.006 
(5.1 h)  - 2.686594 - 2.686 727 1.00005 

(5.le) -0.318310 -0.318310 1 

(5 . l i )  1.9, -5 0 - 

The integrals A and B (equations (3.10), (3.12)) are A = 1.7578, B = 2.84. 

TABLE 3. Summary of numerical identities ( M  = 160, N = 159, ej = lo-') 

6 

5 1  
4 -  

h, = 1 h, = 2 

0 1 2 3 4 5 6 I 8 9 10 
z = h&x 

FIGURE 1 .  Shape of the propagating fluid fracture in terms of the non-dimensional variables. 

the asymptotic form for h from xm to 00. For the second integral the lower integration 
limit was replaced by S (0 < 6 4 q) to avoid computational difficulties a t  the 
singularity. 

Three important issues related to the numerical results are (i) the uniqueness of 
the solution to  (5.la,b),  (ii) their dependence on M and the form of the objective 
function, and (iii) the accuracy of the integration scheme. 

When solving (5.1) we assumed that while F may possess several local minima, 
the global minimum was required in order to make F sufficiently small. Because the 
routine VEOIAD does not necessarily find the global minimum the nature of the 
computed minimum must be assessed using indirect methods which involve searching 
for other minima. We resolved problem (4.1) using different initial estimates, more 
severe error tolerances and with round-off error controls incorporated. Despite 
extensive testing no other minima were found. 

The uniqueness was further investigated by finding the unconstrained minimum 
of F .  A Newton scheme was used for which convergence was very rapid. Solutions 
were found for M varying from 50 to  100. I n  all cases F was less than 
and h decreased monotonically from 0 to - 1 ,  the asymptotic behaviour being 
h - - 1 (2nx2)-'. The behaviour near the origin was closely represented by h = - 4 4  d 
with A,  = 0.44436. 
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FIGURE 2 .  Elastic contribution to the non-dimensional cavity pressure as a function of the 
non-dimensional distance from the crack tip. 11.3 = 110, N = 109, el = 

The dependence on M was tested by comparing solutions obtained to problems 
(5 . la ,  b )  for increasing values of M to the original solution, holding N = M -  1 
throughout. I n  all cases the results agreed closely. The computation was also 
repeated using the modified objective function, 

c [h3p’+1)--1I2, 
i 

virtually identical results being obtained. 
Finally the accuracy of the integration scheme was checked by repeating the 

calculations using a composite six point Gauss-Legendre scheme and an adaptive 
four-point Gauss-Legendre scheme. The values agreed to six significant figures with 
the original ones. 

The shape h ( x )  and pressure p ( x )  (obtained by integrating the computed p’) are 
plotted in figures 1 and 2. 

6.  Applications 
I n  terms of the non-dimensional variables we have found a universal shape for 

buoyancy-driven fluid fracture. This shape is given in figure 1. The maximum 
non-dimensional width of the crack is H = 1.8975 and this occurs a t  S = 1.152. Since 
a solution is found only for a single value of the stress-intensity factor the asymptotic 
width of the fracture is related to the stress-intensity factor by 

h$( 1 - 1 7 )  
h,, = 0.44 

gAPP . 

For a specified value of the stress-intensity factor a crack must have the width given 
by (6.1) if it  is to propagate at a constant velocity. 

The critical stress-intensity factor Kc is a measure of the fracture toughness of the 
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3 

FIQURE 3. Dependence of the asymptotic crack width on the stress-intensity factor. 

C 
(ms-1) 

Y I 
10-81 I I 

1 10 102 103 
K(MN m-8) 

FIQURE 4. Dependence of the propagation speed C on the stress-intensity factor K for several 
values of the magma viscosity 7. -, laminar; ---, turbulent. 

material. Cracks can propagate at low velocities (about lop4 m/s) by the mechanism 
of stress corrosion; in this range K < Kc. However, when K = Kc crack propagation 
becomes catastrophic and the propagation velocity may rapidly accelerate to a large 
fraction of the speed of sound. The value of Kc for a variety of crustal rocks have 
been obtained in the laboratory. This work has been reviewed by Atkinson (1984). 
Typical values for crustal rocks lie within the range K, = 1-3 MN m-t both for 
granites and for basalts with some dependence on grain size. A measured value for 
dunite that is a typical mantle rock is Kc = 4 MN m-:. All these values were obtained 
at  atmospheric pressure. The influence of pressure on the stress-intensity factor is 
difficult to predict. Schmidt & Huddle (1977) found a factor of four increase a t  a 
pressure of 62 MPa for Indiana limestone. Thus it is difficult to specify values of the 
stress-intensity factor for regions of the crust and mantle where buoyancy-driven 
magma fracture is occurring. 

Takingp = 2 x 1O1O Pa, v = 0.25, Ap = 300 kg mp3 andg = 10 msp2 the asymptotic 
- width h,  is given as a function of the stress-intensity factor K in figure 3. From 
h& = C the propagation speed c is related to the asymptotic width h, by 

Propagation speeds are given as a function of the stress intensity factor in figure 4. 
Results are given for viscosities 7, = 0.1,3,100 Pa s. This range covers the measured 
values for a variety of magmas (Kushiro 1980; Persikov 1981). Our laminar analysis 
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FIGURE 5.  Dependence of the volumetric magma flux 3 on the stress-intensity factor K for 
several values of the magma viscosity 7. -, laminar; ---, turbulent. 

is valid if the Reynolds number Re = pmch,/qm is less than about lo3. As an 
approximation for the turbulent regime we replace (6.2) with the equivalent 
turbulent relation 

(6.3) 
7.7 1 h L  (Apg)? 

C =  
P t  Ttn 

This relation is used to give the propagation velocity in figure 4 if Re > lo3. The 
corresponding values of the volumetric flow rate V = ch, are given in figure 5 .  

In  many cases heavy blocks of solid rock (xenoliths) are entrained in basaltic 
magma flows. Carmichael et a2. (1977) have shown that this entrainment implies 
magma velocities of at least c = 0.5 m/s. A variety of studies indicate that basaltic 
magma migrates vertically a t  velocities in the range c = 0.5-5 m/s. A typical 
viscosity for a basaltic magma is 0.1 Pa s. From figures 3 and 4 the corresponding 
range of the stress-intensity factor is K = 20-100 MN m-8 and the range of asymptotic 
widths is h,  = 5-50 mm. From figure 5 the corresponding range of flow rates is 
V = 0.0025-0.25 m2 s-l. 

Studies of the Kilauea Iki eruption on the island of Hawaii during 1959-1960 give 
flow rates of 50-150 m3/s (Williams & McBirney 1979 pp. 232-233). Taking a flow 
rate of 100m3/s, the range of flow rates given above, V =  0.0025-0.25m2s-1, 
corresponds to crack lengths between 400 m and 4 km. These appear to be reasonable 
values for the crack feeding the Hawaiian volcano. Although the above comparison 
appears reasonable, there is conflicting evidence as to whether the flow of magma at 
the surface represents the flow rate through the lithosphere. The role of shallow 
magma chambers in storing magma is poorly understood. 

7. Conclusions 
We have obtained a steady-state solution for a buoyancy-driven fluid fracture. For 

a specified value of the stress-intensity factor the width and propagation speed of 
the crack are determined. Thus the flow through the crack is also specified. If the 
available magma source requires a greater flow, then, presumably, the crack 
propagation problem will not result in a steady state. 

Reasonable values for the crack propagation velocity, flow velocity, and magma 
flux are obtained if K w 60 MN m-f. This is considerably higher than laboratory 
values obtained at atmospheric pressure (K = 1-3 MN m-!). However, there is 
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laboratory evidence that K increases with increasing pressure so that 
K % 60 MN m-: is reasonable for mantle conditions. 

It is clear that  our solution is only approximately valid for magma migration. An 
actual crack in the mantle or crust is three dimensional. Also, magma may melt wall 
rock or it may solidify against the wall rock. Nevertheless, we believe that the 
calculations given in this paper provide a reasonable approximation for the vertical 
ascent of magma to the Earth’s surface. This mechanism can explain the rapid ascent 
velocities required for the transport of diamonds to the surface during a Kimberlitic 
eruption. 

This work was supported in part by the Division of Earth Sciences, National 
Science Foundation, under grant EAR 8318563. 

Appendix A. Evaluation of R(x),  equation (3.10) 
If we define 

g(x) = h(.z)- 1 - 1/3n(r2+ l),  

the remainder term in (3.10) becomes 

ItX2 s3 as  + JOm z g ’ ( s )  S - X  ds]. 

The first integral in the square bracket can be rearranged as 

1 1 -xs ds - 

after which integration gives its value as 

2- I tX (In II: -6 + 0 (L)) , 

while the second behaves for large x like 

1 *  -; Jo s2g’(s)ds. 

Integration by parts is permissible since g = O( l/s3) as s --f co, giving altogether 

.++ 2RB) + 0 (f> , 
where B = s,” sg(s) ds. 

Appendix B. Evaluation of W,(y) (equation 4.2) 
If we define 

I cos n8d8. 

Then since 
a - sin 8 

-1nI I = 
alC. (cos 9 - cos @) ’ 
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and since Ia(0) = 0, integration gives 
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la($) = $( 1 - cos $1 - $, 

(ii) 

The integral is zero when $ = 0, and can be evaluated by differentiation with respect 
to $ 1  

r[ 2 s i n 2 P  
d 9  = 7 ~ .  

COS 8 - CQS $ Ja $ s,” In I I (tan $?) d 9  = - 

Therefore, I i - Ih=-$s in$+i ,  

whence, I ,  = Ia+$ cos$-sin$+$. 

(iii) 

and since 

I ’ - I ’  a - - -- siz$ s,” In I I(2 sin9) d 9 +  1, 

-2 sin29 d 9  = n (s), Ja cos 9 - cos $ 
6 s,” In I I (2 sin9) d 9  = 

we obtain after two integrations 

I 2  - I ,  = 4 sin 2$. 

(iv) More generally, for n > 1 ,  

16+,-16-~ = -(?) sin $ s,” In I 

d 9  
- 2 sin n9 sin 9 J, cos9-cos$ 

$ ja* In1 I(2 s ind9)d9 = 

I (2 sin n9) d 9  

sin (n+ 1) $-sin (n- 1) $ =.( sin $ 

so that two integrations give 

I- 1 sin (n+ 1) $ - sin (n- 1 )  $ 
I n + l - 4 - l  = ; { n+ 1 n-1 

In terms of the I ,  

H ,  = sec2 $$I, - 2 tan $,h = (n - $) tan2 ;$ - $ sec2 &h - 2 tan f$, 
H ,  = (secz $$) I ,  = H ,  + 2$, 

H ,  = (sec2+$) I ,  = H ,  + 2 sin $, 

K+l-K-l = (sec”$) V n + 1 - 4 - 1 ) .  

Appendix C. A linearized solution 
For h(z)  is close to 1, (3.2) gives 

p’(z )  = - 2(h(z) - 1) + O(h(s)  - 1 ) 2 .  

When the squared term is excluded, substitution for h’ in (3.1) gives the linear 
integro-differential equation 
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This equation can be solved as follows by use of the Mellin transform, and the result 
used to obtain an expression for h ( x ) .  We write 

with inverse 

r w  
P(z)  = J ~ * - ~ p ( x ) d x ,  

0 

I rc+iw 
p(x) = & J x-'P(z)dz 

c-i w 

where Re z = c lies in the strip of regularity of P(z).  Then 

p " ( z )  = - rw Z ( Z +  1) x-'-~P(z) dz, 
2ni c-im 

and if z(z + 1) P(z) is regular in the strip c - 2 < Re z < c this integral can be written 

Then since 

1 Cflw 

( 2 - 2 )  (2- 1) ~ - ' P ( 2 - 2 )  d2. 
5% L,, 

do s--x 1 O0 s-'ds 
= x-'(cotnz) (0 < Rez < l ) ,  

provided 0 < c < 1, the right-hand side of (C 5 )  becomes 

which when equated to (C 3) gives the functional equation 

2P(z)  = ( z -  1) ( z -  2) (cot nz) P(z-  2).  

h ( z )  is given in terms of P by 

h(x) = 1-&'(2) = 1+, fe+iw H ( z )  x - ~  dz, 
2x1 c-im 

say, where H ( z )  = $(z -  1)  P(z-  1). 

Therefore H ( z )  satisfies the functional equation 

2H(z+ 1) = z ( z -  1) (cot nz) H ( z -  1). (C 8) 
The general solution of this equation satisfying the constraint (C 4) and suitably 
bounded as Im z+ co is given by 

H ( z )  = (A+Ccot$z)@(z), (C 9) 
where A ,  C are arbitrary constants, and 

Here G(z+ 1) is the Alexeievski function (Whittaker & Watson 1946 p. 264) which 
satisfies the functional equation 

G ( z + l )  = T ( z ) G ( z ) ,  G(1) = 1. 

G(z+  1) is regular throughout the complex plane and has zeros of order n a t  z = -n, 
n = 1,2, .... 

@(z)  therefore has simple poles a t  z = -;, -4, 3, 4. 
The factor cot@ introduces additional poles a t  z = 0, 2 and suppresses that at 

z =  3. 
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The integral (C 7) can now be expanded in terms of the residues at the poles of H(z) .  
Those in Rez < c give the expansion for x < 1 as 

h(x) = 1 + 2C + %-;(A - C) d + O(&) 

while those in Re z > c give 

The linearization underlying the equation is not valid a t  x = 0 ,  but if nevertheless 
the constant C is chosen as -; to ensure that h(0) = 0, these become 

h(x) = 2hd+O (xf) (X < l ) ,  

with h = 2 k - i  ( A + + ) .  The leading terms are now of the same form as those of (3.6), 
(3.12) respectively, but the constant a is undetermined. A is related to  the integral 
of h in exactly the same way as for the non-linear problem : 

roo 
J (h-1)dX = H ( 1 )  = A .  

0 

This agrees with (4.15). 
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